Source code for networkx.utils.misc

"""
Miscellaneous Helpers for NetworkX.

These are not imported into the base networkx namespace but
can be accessed, for example, as

>>> import networkx
>>> networkx.utils.is_string_like('spam')
True
"""
#    Copyright (C) 2004-2015 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
import sys
import uuid
# itertools.accumulate is only available on Python 3.2 or later.
#
# Once support for Python versions less than 3.2 is dropped, this code should
# be removed.
try:
    from itertools import accumulate
except ImportError:
    import operator

    # The code for this function is from the Python 3.5 documentation,
    # distributed under the PSF license:
    # <https://docs.python.org/3.5/library/itertools.html#itertools.accumulate>
    def accumulate(iterable, func=operator.add):
        it = iter(iterable)
        try:
            total = next(it)
        except StopIteration:
            return
        yield total
        for element in it:
            total = func(total, element)
            yield total

import networkx as nx

__author__ = '\n'.join(['Aric Hagberg (hagberg@lanl.gov)',
                        'Dan Schult(dschult@colgate.edu)',
                        'Ben Edwards(bedwards@cs.unm.edu)'])
### some cookbook stuff
# used in deciding whether something is a bunch of nodes, edges, etc.
# see G.add_nodes and others in Graph Class in networkx/base.py

[docs]def is_string_like(obj): # from John Hunter, types-free version """Check if obj is string.""" try: obj + '' except (TypeError, ValueError): return False return True
[docs]def iterable(obj): """ Return True if obj is iterable with a well-defined len().""" if hasattr(obj,"__iter__"): return True try: len(obj) except: return False return True
[docs]def flatten(obj, result=None): """ Return flattened version of (possibly nested) iterable object. """ if not iterable(obj) or is_string_like(obj): return obj if result is None: result = [] for item in obj: if not iterable(item) or is_string_like(item): result.append(item) else: flatten(item, result) return obj.__class__(result)
[docs]def is_list_of_ints( intlist ): """ Return True if list is a list of ints. """ if not isinstance(intlist,list): return False for i in intlist: if not isinstance(i,int): return False return True
PY2 = sys.version_info[0] == 2 if PY2: def make_str(x): """Return the string representation of t.""" if isinstance(x, unicode): return x else: # Note, this will not work unless x is ascii-encoded. # That is good, since we should be working with unicode anyway. # Essentially, unless we are reading a file, we demand that users # convert any encoded strings to unicode before using the library. # # Also, the str() is necessary to convert integers, etc. # unicode(3) works, but unicode(3, 'unicode-escape') wants a buffer. # return unicode(str(x), 'unicode-escape') else:
[docs] def make_str(x): """Return the string representation of t.""" return str(x)
[docs]def generate_unique_node(): """ Generate a unique node label.""" return str(uuid.uuid1())
[docs]def default_opener(filename): """Opens `filename` using system's default program. Parameters ---------- filename : str The path of the file to be opened. """ from subprocess import call cmds = {'darwin': ['open'], 'linux2': ['xdg-open'], 'win32': ['cmd.exe', '/C', 'start', '']} cmd = cmds[sys.platform] + [filename] call(cmd)
def dict_to_numpy_array(d,mapping=None): """Convert a dictionary of dictionaries to a numpy array with optional mapping.""" try: return dict_to_numpy_array2(d, mapping) except (AttributeError, TypeError): # AttributeError is when no mapping was provided and v.keys() fails. # TypeError is when a mapping was provided and d[k1][k2] fails. return dict_to_numpy_array1(d,mapping) def dict_to_numpy_array2(d,mapping=None): """Convert a dictionary of dictionaries to a 2d numpy array with optional mapping. """ import numpy if mapping is None: s=set(d.keys()) for k,v in d.items(): s.update(v.keys()) mapping=dict(zip(s,range(len(s)))) n=len(mapping) a = numpy.zeros((n, n)) for k1, i in mapping.items(): for k2, j in mapping.items(): try: a[i,j]=d[k1][k2] except KeyError: pass return a def dict_to_numpy_array1(d,mapping=None): """Convert a dictionary of numbers to a 1d numpy array with optional mapping. """ import numpy if mapping is None: s = set(d.keys()) mapping = dict(zip(s,range(len(s)))) n = len(mapping) a = numpy.zeros(n) for k1,i in mapping.items(): i = mapping[k1] a[i] = d[k1] return a